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Supercomputing: Hardware Evolution 

• Power	
  is	
  the	
  main	
  constraint	
  
‣ 30X performance gain by 2020  
‣ ~10-20MW per large system 
‣ power/socket roughly const. 

• Only	
  way	
  out:	
  more	
  cores	
  
‣ Several design choices 
‣ None good from scientist’s perspective 

• Micro-­‐architecture	
  gains	
  sacrificed	
  
‣ Accelerate specific tasks 
‣ Restrict memory access structure    

(SIMD/SIMT) 
• Machine	
  balance	
  sacrifice	
  

‣ Memory/Flops; comm BW/Flops —         
all go in the wrong direction 

‣ (Low-level) code must be refactored
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• Motivations for large HPC campaigns:                                                                                                                  

              1) Quantitative predictions for complex, nonlinear systems                           
              2) Discover/Expose physical mechanisms 
              3) System-scale simulations (‘impossible experiments’) 
              4) Large-Scale inverse problems and optimization 

• Driven by a wide variety of data sources, computational 
cosmology must address ALL of the above  

• Role of scalability/performance: 
              1) Very large simulations necessary, but not just a matter of  
               running a few large simulations 
              2) High throughput essential (short wall clock times) 
              3) Optimal design of simulation campaigns (parameter scans) 
              4)  Large-scale data-intensive applications                                                                                                                                                                                                                      

Motivating HPC 



Supercomputing Challenges: Sociological View 

• Codes	
  and	
  Teams	
  
‣ Most codes are written and maintained by small teams working near the 

limits of their capability (no free cycles) 
‣ Community codes, by definition, are associated with large inertia (not 

easy to change standards, untangle lower-level pieces of code from 
higher-level organization, find the people required that have the 
expertise, etc.) 

‣ Lack of consistent programming model for “scale-up” 
‣ In some fields at least, something like a “crisis” is approaching (or so 

people say) 
• What	
  to	
  do?	
  

‣ We will get beyond this (the vector to MPP transition was worse) 
‣ Transition needs to be staged (not enough manpower to entirely rewrite 

code base) 
‣ Prediction: There will be no ready made solutions 
‣ Realization — “You have got to do it for yourself”



Performance and Portability I 

• Performance (assuming you are solving a new problem, not doing ‘ports’) 
• Are you sure you want brute speed? Is performance the true bottleneck? (There is always a 

price -- realize all HPC machines are poorly balanced) 

• Or do you just want to run a ‘large’ problem with acceptable time to solution? (This is the 
general case) 

• Step I: Know what you want, if performance is a priority it must be designed in right at the 
start, you’ll never get it afterwards (optimizing gains are often minimal to non-existent) 

• Step II: If performance is needed, make sure you understand the global science problem(s) 
being addressed; you may have to start from scratch! There’s no replacement for domain 
knowledge 

• Factor of two rule -- given human constraints (and Moore’s law), it is not usually worth it to 
go for the last factor of two, but there are exceptions -- HACC is one 

• Step III: Obtaining performance is painful, so design for the future -- what can you rely on, 
what can disappear, what can change, what can break -- the more parameters you can 
control, the better -- HPC systems are not your laptop: Learn from experience 

• General Advice (mostly obvious): On-chip/node optimization comes first, minimize number of 
performance ‘hot spots’ to the extent possible, ditto with data motion (aim to be compute-
bound, avoid look-ups), avoid forest/tree syndromes, think about sacrificing memory for 
speed wherever possible, vectorize everything, FMAs are your friends, talk to performance 
gurus, do not resort to assembly unless desperate, etc. etc. 



Performance and Portability II

• Portability (assuming you are developing new code) 
• Three scales of code development: individual (‘idiosyncratic’), small team (‘hot shots’), big 

team to open source (‘industrial’) 

• Compute environment: small-scale (‘individual PI’, low diversity hardware), medium-scale 
(‘single project’, somewhat diverse hardware), large-scale (‘multiple projects’, very diverse 
hardware) -- note scale here does not refer to problem size! 

• Step I: Consider which categories your situation falls into, this will help set the portability 
constraints 

• Concrete advice is difficult; situations vary, look around you and see what other people are 
doing -- learn from them (adopt/reuse what works, dump what does not, be ruthless) 

• Simplicity is good (learn from Google!), avoid nonfunctional ‘adornments’ 

• Design for the future -- software life cycles should be long, but often are not 
• Step II: Most science projects start with a compact ‘software core’ that grows in multiple 

directions, pay attention to planning the structure of the core and the extension paths -- things 
will often not work as expected so make sure the structure is sufficiently flexible -- starting 
from scratch should be largely a reconfiguration of key software elements; identify these 
elements and design around them 

• Performance and portability are often in opposition, but they can be co-aligned -- as in HACC  



Co-Design vs. Code Design
BQC: 
- 16 cores 
- 205 GFlops, 16 GB 
- 32 MB L2, crossbar at 
400 GB/s (memory 
connection is 40 GB/s) 
- 5-D torus at 40 GB/s
Xeon Phi (Knights Corner): 
- 60 cores 
- 1 TFlops, 8 GB 
- 32 MB L2, ring at 300 GB/s 
(connects to cores and 
memory) 
- 8 GB/s to host CPU

Average performance speed-up on ~10 applications codes on Titan is 
~2 (ranging from 1-8), but of Titan’s 27 PFlops, only 2.5 PFlops are in 
the CPU! What is wrong with this picture? (BTW, it’s not Titan’s fault!) 

16GB

16GB

Roadrunner: The Original Driver for HACC

!
• HPC Myths 

• The magic compiler 
• The magic 

programming model/
language (DSL) 

• Special-purpose 
hardware 

• Co-Design? 
• Dealing with (Current) 

HPC Reality 
• Follow the architecture 
• Know the boundary 

conditions 
• There is no such thing 

as a ‘code port’ 
• Think out of the box 
• Get the best team 
• Work together



• Instrumentation Advances 
• Cosmic Acceleration                                        
• Nature of Dark Matter 
• Primordial Fluctuations 
• Neutrinos 
• Cosmic Structure Formation

ROSAT (X-ray) WMAP (microwave)

Fermi (gamma ray) SDSS (optical)

Why HACC?: ‘Precision’ Cosmology I

Boyle, Smith

Perlmutter, 
Riess, Schmidt

Mather, Smoot

Optical survey ‘Moore’s Law’

The Source of Knowledge: Sky Surveys

The Cosmic 
Puzzle: Who 
ordered the 
rest of it?



Why HACC: Precision Cosmology II

Planck (2013)

Concurrent 
Supercomputing 
Progress

Four orders of 
magnitude!

Equivalent to 
one modern GPU

Compilation for SH by  
E. Gawiser (1999)

sCDM

CMB LSS

4 orders of 
magnitude!

BOSS (2013)

Compilation (1999)
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Why Another “Code”?
‣ HPC systems: “faster = more” 

• More nodes 
- Separate memory spaces 
- Relatively slow network communication 

• More complicated nodes 
- Architectures 

- Accelerators, multi-core, many-core 
- Memory hierarchies 

- CPU main memory 
- Accelerator main memory  
- High-bandwidth memory 
- Non-volatile memory 

‣ Portable performance 
• Massively parallel/concurrent 
• Adapt to new architectures 

- Organize and deliver data to the right 
place in the memory hierarchy at the 
right time 

- Optimize floating point execution 
• Not possible with off-the-shelf codes

Roadrunner Architecture (2008)



HACC Ideas and Features

Next up for HACC:

Summit

Cori

Aurora

What is HACC?
HACC (Hardware/Hybrid Accelerated 
Cosmology Code) Framework

• HACC does very large high-resolution 
cosmological simulations  
• Design Imperative: Must run at high performance on 

all supercomputer architectures at full scale 

• First production science code to break 10PFlops 
(sustained) 

• Combines a number of algorithms using a ‘mix and 
match’ approach based on a 2-level structure 

• Perfect weak scaling 

• Strong scales to better than 100 MB/core  

• World’s largest high-resolution cosmology 
simulations on Mira and Titan 

• CORAL benchmark code: Chosen for early science 
projects on Cori, Summit, and Theta 

!



Supercomputer SDSS TelescopeMock Galaxies SDSS 
Galaxies

Dark 	


matter

Theory

Role of Computation in Cosmology

• Three Roles of Cosmological Simulations 
• Basic theory of cosmological probes 

• Production of high-fidelity ‘mock skys’ for end-to-end tests of the 
observation/analysis chain 

• Essential component of analysis toolkits 

• Extreme Simulation and Analysis Challenges 
• Large dynamic range simulations; control of subgrid modeling 

and feedback mechanisms 

• Design and implementation of complex analyses on large 
datasets; new fast (approximate) algorithms 

• Solution of large statistical inverse problems of scientific 
inference (many parameters, ~10-100) at the ~1% level 

!
      

Analysis Software

Cosmological Simulation

Observables

Experiment-
specific output 

(e.g., sky catalog)

Atmosphere

Telescope

Detector

Pipelines
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Simulating the Universe 
• Key Role of Gravity 

• Gravity dominates at large scales: 
the Vlasov-Poisson equation (VPE) 

• VPE is 6-D; cannot be solved as a 
PDE 

• N-Body Methods 
• No shielding in gravity (essentially 

long range interactions) 

• Technique is naturally Lagrangian 

• Are errors controllable? 
• More Physics  

• Smaller scale ‘gastrophysics’ 
effects added via hydro solvers, 
subgrid modeling, or post-
processing (major topic) 

• Phenomenology 
• Calibrate simulations against 

observations 

Structure formation via gravitational Jeans instability

Cosmological Vlasov-Poisson Equation: A ‘wrong-sign’  
electrostatic plasma with time-dependent particle ‘charge’,  

Newtonian limit of the Vlasov-Einstein equations



HACC’s Domain: The “Bleeding Edge”

• Force and Mass Resolution:  
• Galaxy halos ~100kpc, hence force 

resolution has to be ~kpc; with Gpc box-
sizes, a dynamic range of a million to 
one — ~trillion particle simulations 

• Ratio of largest object mass to lightest is 
~100,000:1  

• Physics:  
• Gravity dominates at scales greater than 

~0.1 Mpc 

• Small scales: galaxy modeling, semi-
analytic methods to incorporate gas 
physics/feedback/star formation 

• Computing ‘Boundary Conditions’:  
• Total memory in the PB+ class 

• Performance in the 10 PFlops+ class 

• Wall-clock of ~days/week, in situ 
analysis

Key motivation for HACC (Hardware/
Hybrid Accelerated Cosmology Code): 
Can the Universe be run as a short 
computational ‘experiment’?

1000 Mpc

100 Mpc

20 Mpc

2 Mpc

Ti
m

e

Gravitational Jeans Instability: ‘Outer Rim’ 
run with 1.1 trillion particles



  
• Optimize Next-Generation Code ‘Ecology’: Numerical methods, 

algorithms, mixed precision, data locality, scalability, I/O, in situ 
analysis -- life-cycle significantly longer than architecture timescales 

• Framework design: Support a ‘universal’ top layer + ‘plug-in’ 
optimized node-level components; minimize data structure 
complexity and data motion -- support multiple programming models 

• Performance: Optimization stresses scalability, low memory 
overhead, and platform flexibility; assume ‘on your own’ for software 
support, but hook into tools as available (e.g., ESSL FFT) 

• Optimal Splitting of Gravitational Forces: Spectral Particle-Mesh 
melded with direct and RCB tree force solvers, short hand-over 
scale (dynamic range splitting ~ 10,000 X 100) 

• Compute to Communication balance: Particle Overloading 

• Time-Stepping: Symplectic, sub-cycled, locally adaptive 

• Force Kernel: Highly optimized force kernel takes up large fraction 
of compute time, no look-ups due to short hand-over scale 

• Production Readiness: runs on all supercomputer architectures; 
exascale ready!

Opening the HACC ‘Black Box’: Design Principles

HACC force hierarchy 
(PPTreePM)

Roadrunner 
RIP

Titan

Hopper

Mira



Dissecting the N-Body Problem

• Physics Idea:  
• Smooth long-range component  — slowly varying “mass field” 

• Fluctuating short-range component — faster time-scale, discrete force 
contributions 

• Implementation:  
• Smooth field produced from depositing N-body particles on a (large) grid — 

O(10,000) cube (4 orders of magnitude dynamic range); solve Poisson equation 
on these scales using a ‘quiet’ spectral method (matching and force-solving 
undertaken as a single task) 

• Small scales: match the small-scale force to the long-range force using spectral 
filtering at the smallest practical scales — O(100) dynamic range 

• Compute small-scale forces with the algorithm that makes the most sense for a 
given architecture (use mixed precision) 

• Scale Isolation:  
• Small-scale forces are made (essentially) ultra-local using particle overloading 

• Sub-cycled time-stepping using a split-operator symplectic solver separates the 
force scales in time



‘HACC In Pictures’

Mira/Sequoia

Newtonian  
Force

Noisy CIC PM Force

6th-Order sinc-Gaussian 
spectrally filtered PM 

Force
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HACC Top Layer:  
3-D domain decomposition 
with particle replication at 
boundaries (‘overloading’) 
for Spectral PM algorithm 

(long-range force)

HACC ‘Nodal’ Layer:  
Short-range solvers 

employing combination 
of flexible chaining mesh 
and RCB tree-based force 

evaluations

RCB tree 
levels

~50 Mpc ~1 Mpc

Host-side GPU: two options,  
P3M vs. TreePM



Particle Overloading and Short-Range Solvers
  

• Particle Overloading: Particle replication instead of 
conventional guard zones with 3-D domain decomposition 
-- minimizes inter-processor communication and allows for 
swappable short-range solvers (IMPORTANT) 

• Short-range Force: Depending on node architecture 
switch between P3M and PPTreePM algorithms (pseudo-
particle method goes beyond monopole order), by tuning 
number of particles in leaf nodes and error control criteria, 
optimize for computational efficiency 

• Error tests: Can directly compare different short-range 
solver algorithms 

Overload Zone (particle ‘cache’)

RCB Tree Hierarchy 

Gafton and 
Rosswog 2011

+/- 0.1%

HACC Force Algorithm Test: PPTreePM vs. P3M

P(k) Ratio
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Splitting the Force: The Long-Range Solver
  

• Spectral Particle-Mesh Solver: Custom 
(large) FFT-based method -- uses (i) 6-th 
order Green function, (ii) 4th order spectral 
Super-Lanczos gradients, (iii) high-order 
spectral filtering to reduce grid anisotropy 
noise 

• Short-range Force: Asymptotically correct 
semi-analytic expression for the difference 
between the Newtonian and the long-range 
force; uses a 5th order polynomial 

• Pencil-decomposed Parallel 3-D FFT: 
Fast 3D-to-2D combinatorics, FFT 
performance theoretically viable to 
exascale systems; HACC scalability 
depends entirely on FFT performance  

• Time-stepping uses Symplectic Sub-
cycling: Time-stepping via 2nd-order 
accurate symplectic maps with ‘KSK’ for 
the global timestep, where ‘S’ is split into 
multiple ‘SKS’ local force steps 

1/r

Noisy CIC PM force

6th-Order sinc-Gaussian 
spectrally filtered PM 

force
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HACC on the BG/Q 
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Number of Cores
HACC weak scaling on the  
IBM BG/Q (MPI/OpenMP)

13.94 PFlops, 69.2% peak, 90% parallel efficiency on 
1,572,864 cores/MPI ranks, 6.3M-way concurrency

3.6 trillion particle 
benchmark*

Habib et al. 2012

HACC: Hybrid/
Hardware 

Accelerated  
Cosmology Code 

Framework

 HACC BG/Q Version 
• Algorithms: FFT-based 

SPM; PP+RCB Tree 
• Data Locality: Rank level 

via ‘overloading’, at tree-
level use the RCB 
grouping to organize 
particle memory buffers 

• Build/Walk Minimization: 
Reduce tree depth using 
rank-local trees, shortest 
hand-over scale, bigger  
p-p component 

• Force Kernel: Use 
polynomial representation 
(no look-ups); vectorize 
kernel evaluation; hide 
instruction latency 

! *largest ever run



Accelerated Systems: Specific Issues

Mira/Sequoia

 Imbalances and Bottlenecks 
• Memory is primarily host-side (32 

GB vs. 6 GB) (against 
Roadrunner’s 16 GB vs. 16 GB), 
important thing to think about (in 
case of HACC, the grid/particle 
balance) 

• PCIe is a key bottleneck; overall 
interconnect B/W does not match 
Flops (not even close) 

• There’s no point in ‘sharing’ work 
between the CPU and the GPU, 
performance gains will be minimal 
-- GPU must dominate 

• The only reason to write a code for 
such a system is if you can truly 
exploit its power (2 X CPU is a 
waste of effort!) 

 Strategies for Success 
• It’s (still) all about understanding and 

controlling data motion 
• Rethink your code and even 

approach to the problem 
• Isolate hotspots, and design for 

portability around them (modular 
programming) 

• Like it or not, pragmas will never be 
the full answer 

!



HACC on Titan: GPU Implementation (Schematic)

Block
3	
  Grid	
  units

Push	
  to	
  GPU

Chaining  
Mesh

 P3M Implementation (OpenCL): 
• Spatial data pushed to GPU in large 

blocks, data is sub-partitioned into 
chaining mesh cubes 

• Compute forces between particles in 
a cube and neighboring cubes 

• Natural parallelism and simplicity 
leads to high performance 

• Typical push size ~2GB; large push 
size ensures computation time 
exceeds memory transfer latency by 
a large factor 

• More MPI tasks/node preferred over 
threaded single MPI tasks (better 
host code performance) 

 New Implementations (OpenCL and 
CUDA): 

• P3M with data pushed only once per 
long time-step, completely 
eliminating memory transfer 
latencies (orders of magnitude less); 
uses ‘soft boundary’ chaining mesh, 
rather than rebuilding every sub-
cycle 

• TreePM analog of BG/Q code written 
in CUDA, also produces high 
performance



HACC on Titan: GPU Implementation Performance

  
• P3M kernel runs at 

1.6TFlops/node at 
40.3% of peak (73% 
of algorithmic peak) 

• TreePM kernel was 
run on 77% of Titan 
at 20.54 PFlops at 
almost identical 
performance on the 
card  

• Because of less 
overhead, P3M code 
is (currently) faster by 
factor of two in time 
to solution 

!

Ideal Scaling

Initial Strong Scaling
Initial Weak Scaling

Improved Weak Scaling

 TreePM Weak Scaling
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99.2% Parallel Efficiency



Q Continuum: Extradimensional plane of existence Visualization: Silvio Rizzi, Joe Insley et. al., Argonne

The high resolution Q Continuum Simulation, finished July 13 on ~90% of Titan under INCITE, evolving more than 
half a trillion particles. Shown is the output from one node (~33 million particles), 1/16384 of the full simulation
30



Summary
!

• Thoughtful design of flexible code infrastructure; minimize number of 
computational ‘hot spots’, explore multiple algorithmic ideas — exploit domain 
science expertise 

• Because machines are so out of balance, focusing only on the lowest-level 
compute-intensive kernels can be a mistake (‘code ports’) 

• One possible solution is an overarching universal layer with architecture-
dependent, plug-in modules (with implications for productivity) 

• Understand data motion issues in depth — minimize data motion, always look 
to hide communication latency with computation 

• Be able to change on fast timescales (HACC needs no external libraries in the 
main simulation code — helps to get on new machines early) 

• As science outputs become more complex, data analysis becomes a very 
significant fraction of available computational time — optimize performance 
with this in mind 

• Main HACC paper — http://arxiv.org/abs/1410.2805;  
• Also — http://authors.elsevier.com/a/1RSrG_VU94HRMb (until Sep 20) 

http://arxiv.org/abs/1410.2805
http://authors.elsevier.com/a/1RSrG_VU94HRMb

